ANALYZING UNSTRUCTURED DATA: TEXT ANALYTICS IN JMP

<u>Volker Kraft</u> SAS Institute – JMP Division, JMP Academic Team volker.kraft@jmp.com

As much as 80% of all data is unstructured but still has exploitable information available. For example, unstructured text data could result from comment fields in surveys or incident reports. You want to explore this unstructured text to better understand the information that it contains. Text Mining, based on a transformation of free text into numerical summaries, can pave the way for new findings.

This example of the new text mining feature in JMP starts with a multi-step text preparation using techniques like stemming and tokenizing. This data curation is pivotal for the subsequent analysis phase, exploring data clusters and semantics. Finally, combining text mining results with other structured data takes familiar multivariate analysis and predictive modeling to a next level.

INTRODUCTION

In the digital world of today, the cost and the limitation barriers in storing and accessing data have been pretty much removed. In 2015, IDC Research estimated that 90% of this vast amount of digital data is *unstructured* data, including responses to open-ended survey questions, social media, email, maintenance reports and HTML web pages (Vijayan, 2015).

The new *Text Explorer* platform in JMP 13 does not only allow to learn from unstructured text data without programming, but can make the tedious cleanup of inherently messy text data quick, easy, and fun. As soon as the data are ready for analysis, you are typically interested in questions like

- Can we identify groups of documents that are similar to one another as a way of summarizing content or uncover themes?
- Are there any unusual documents ("outliers")?
- Can we discover relationships between structured and unstructured data?
- Can we improve predictive models by combining text data with other data sources?

We all know how to tackle these questions with more traditional, structured data. Text exploration in JMP amounts to transforming text data into a more traditional rectangular data format, which then supports classical multivariate analysis techniques like regression, CART or GLM.

It is amazing to see how much you can learn from text data just by using "simple" data mining techniques, without worrying about higher linguistic levels like syntax analysis or natural language understanding. Text Explorer is typical JMP and makes text analytics easily accessible, very interactive and visual. Statistical discoveries from unstructured text data can also be a lot of fun, especially in teaching data mining or multivariate analysis courses.

Let us introduce the basic terminology and workflow of text analytics in JMP, by looking at a real-world example.

BASIC TERMINOLOGY AND WORKFLOW

The JMP table "NTSBAccidentReports2001-2003.jmp" (Fig. 1) provides data about 3,235 accidents in air traffic, collected between 2001-2003 by the National Transportation Safety Board in the US. One column, 'narr_cause', is formatted as "unstructured text". This column is called a *corpus*, and each cell stores a *document*. One task in this example is to explore relationships between the (unstructured) reports and other (structured) information like month of year or weather conditions incl. temperature and wind. Another goal is predicting fatality (YES/NO) of an accident based on the text information stored in accident reports.

• • •				NTSBAccidentReports2001-2003.jmp			
 NTSBAccidentReports2001-200 Distribution 	•		fatal	narr_cause	event_dow (Event Day of	event_month	
Logistic Regression	•	1	NO	The pilot failed to maintain directional control of the airplane and the ru	Mo	January	DA
Decision Tree (CART)	•	2	NO	The pilot's failure to maintain directional control on the runway. Factors	Мо	January	ND
Text Explorer of narr_cause	•	3	NO	The failure of the student pilot to maintain adequate ground clearance	Mo	January	DA
	•	4 1	NO	The failure of the pilot to obtain assistance from the FBO in the form of	Tu	January	DA
Columns (30/0)	•	5	NO	The pilot's failure to maintain a proper glidepath during final approach	We	January	DU
a fatal	•	6	NO	Missing exhaust nozzle bolts for undetermined reasons. A factor was in	We	January	DA
i fatal ≡ narr_cause	•	7	NO	the pilot's failure to maintain aircraft control during a landing attempt	Th	January	DA
 Predictor Variables (6/0) 	•	8	NO	The pilot's improper trim setting, which resulted in a runway overrun an	Th	January	DA DA DA DA DA DA
 Event Info (20/0) 	•	9	NO	The pilot's inadequate compensation for the crosswind conditions, whic	Th	January	DA
Stop Words	•	10	NO	Aircraft directional control not being maintained by the student pilot du	Th	January	DA
Validation	•	11	NO	The PIC's failure to follow safe operating procedures for the maintenanc	Fr	January	DA
Baura	•	12	NO	The pilot's inadequate compensation for the winds. A factor was the wi	Fr	January	DA
All rows	35	13	NO	The student pilot's inadequate compensation for a tailwind during final	Fr	January	DA
Selected 3,2	0	14	NO	Improper weather evaluation by both the pilot and pilot/passenger, and th	e pilot's inadverten	t VFR flight into IM	C
Excluded	0 •	15 I	NO	resulting in his spatial disorientation. Factors were the pilot rated passenge	er's spatial disorient	ation, fog, and nig	<mark>ht </mark>
Hidden	0 •	16	YES	conditions.			
Labelled	0	17	NO	the pilot's failure to maintain directional control during the forced landin	Sa	January	DA

Fig. 1: NTSB Accident Reports, with unstructured text column 'narr_cause' (=corpus), containing 3,235 cells (=documents)

According to Klimberg et al. (2016) the process of text analysis can be split into three phases:

- 1. *Term Creation:* This phase does all text cleanup and develops the so-called *document term matrix* (DTM). The DTM is a set of indicator variables that represent the *terms* (columns) in the documents (rows). Terms are all words and phrases which will be considered in the analysis phase. Techniques like tokenizing, phrasing and terming are used to initially develop the DTM. Subsequently, you explore the set of variables and curate the DTM, by grouping words or removing infrequent words, until you are satisfied.
- 2. *Text Analysis:* Text visualization and the text multivariate techniques of clustering, principal components, and factor analysis are used to understand the composition of the DTM.
- 3. *Explore relationships and predict outcomes:* If a dependent variable exists (here: 'fatal'), you can use the text multivariate analysis results, along with other structured data, as independent variables in a predictive technique.

PART I: TERM CREATION

We launch Text Explorer from the Analyze menu in JMP and select 'narr_cause' as the Text Column for analysis (Fig. 2). All other settings are (carefully preconfigured) defaults. Both stemming and regular expressions for tokenizing are advanced options and not used here.

• • •	Тех	t Explorer			Display Options
Select Columns		Cast Selected Column	s into Roles	Action	Term Options Parsing Options
S30 Columns ▲ fatal = narr_cause		Text Columns	≡ narr_cause optional character	OK Cancel	Latent Class Analysis ✓ Latent Semantic Analysis, SVD ✓ Topic Analysis, Rotated SVD Cluster Terms ✓ Cluster Documents
 Predictor Variables (6/0) Event Info (20/0) 		ID	optional	Remove	SVD Scatterplot Matrix Topic Scatterplot Matrix
Validation		Ву	optional	Recall Help	Save Document Term Matrix Save Document Singular Vectors Save Document Topic Vectors Save Stacked DTM for Association
Language Maximum Words per Phrase	English				Save DTM Formula
Maximum Number of Phrases	5000				Save Singular Vector Formula Save Topic Vector Formula
Minimum Characters per Word	1				Save Term Table
Maximum Characters per Word	50				Save Term Singular Vectors
Stemming	No Stemming				Score Terms by Column
Tokenizing Customize Regex Treat Numbers as Words	Regex				Local Data Filter Redo Save Script

Fig. 2: Launching Text Explorer to analyze text column 'narr_cause' (left). Top red triangle menu in Text Explorer report (right).

The summary in Fig. 3 tells us that 3235 documents were parsed into 85675 tokens, representing 1328 different terms. The terms used most often are 'landing' and 'failure'. Some terms were manually removed from the term list (right-click > "Add Stop Word").

Phrases are word sequences which occur more than once in the corpus. The phrase used most often is 'failure to maintain', occurring 844 times and consisting of three words. The grey phrases have been added to the term list (right-click > "Add Phrase"), since they represent important concepts. 'Landing gear' in red was already added as a system phrase.

			NTSBAcci	dentReport	s2001-200	3 - Text Explorer of na	rr_cause		
Text Ex	plorer f	or nar	r_cause						
Number N of Terms	Number of Cases	Total Tokens	Tokens per Case	Number emp	of Non- ty Cases	Portion Non- empty per Case			
1328	3235	85675	26.4838		3235	1.0000			
• Term an	d Phras	e Lists	5						
Term		Cou	nt		Phrase			Count	Ν
landing		140	67		failure	to maintain		844	3
failure		99	72		engine	power		479	2
factor		98	39		loss of	engine		457	3
resulted		8	53		loss of	engine power		451	4
failure to m	aintain	84	14		directio	onal control		396	2
flight		83	31		contrib	uting factor		339	2
factors		8	10		forced	landing		334	2
contributin	g	7	11		maintai	n directional contro	ol	306	3
terrain		70)1		maintai	n directional		306	2
accident		63	38		contrib	uting factors		248	2
inadequate	;	50	52		failure	to maintain directio	onal	238	4
resulting		54	47		undete	rmined reasons		223	2
control		50	06		landing	gear		185	2
loss of eng	ine power	45	51		inadver	tent stall		154	2
conditions		44	41		landing	roll		154	2

Fig. 3: Top terms and phrases after removing some terms and adding phrases

The term list can be visualized by a word cloud (Fig. 4). Top terms and phrases (added to the term list) are emphasized by font size. Everywhere where you see a term or phrase (e.g. in Fig. 3 and Fig. 4) you can right-click and choose "Show Text" to see the contextual information. This is very helpful if you want to understand how a single term or phrase is used.

PART II: TEXT ANALYSIS

Figure 5 shows the results from the dimension reduction in the document space (left, DTM rows) and term space (right, DTM columns), called *Latent Semantic Analysis*. Similar to Principal Component Analysis in multivariate analysis, Singular Value Decomposition (SVD) is used in text analysis to take advantage of the sparse nature of the DTM. With only two dimensions both related documents and terms group nicely. Results like SVD vectors or SVD Matrix can be exported for further analysis by other JMP platforms.

Fig. 5: Two-dim. document and term vector spaces after Latent Semantic Analysis (SVD)

Topic Analysis performs a varimax rotated singular value decomposition of the DTM to produce groups of terms called topics. This corresponds to Factor Analysis in multivariate analysis. In this example, Topic1 seems to represent the weather theme, while Topic6 is about maintenance.

Documents can be visually selected based on their topic scores, and more detailed relationships can be discovered by a combined scatterplot matrix of the rotated SVD vectors (topics) in the term and document space.

Topic Wor	ds									
Торі	c1	Тор	ic2		Topic3		То	pic4	То	pic5
Term	Scor	e Term	Score	Term		Score	Term	Scor	re Term	Score
conditions	0.2662	9 n89803	0.42364	forced		0.2690	midair	0.3621	9 directives	0.32031
instrument	0.2656	2 rolling	0.41177	fuel		0.2547	way	0.3406	3 local	0.28624
meteorologic	al 0.2520	0 set	0.31753	loss of engir	ne power	0.2336	yield	0.3406	3 controller	0.26957
continued	0.2136	5 cockpit	0.30131	starvation		0.1981	atc	0.2799	2 faa	0.25078
vfr	0.2124	8 insure	0.26164	suitable		0.1819	lower	0.2483	0 follow	0.23959
weather	0.2034	2 front	0.25694	due		0.1674	lookout	0.2403	6 procedur	es 0.23777
factors	0.1952	6 forward	0.23763	terrain		0.1610	airplanes	0.2282	0 taxiing	0.20765
flight	0.1930	8 brakes	0.21348	fuel exhaust	ion	0.1498	radio	0.2200)3 cross	0.16843
fog	0.1882	5 attention	0.21054	unsuitable		0.1461	visual	0.2181	2 md	0.15902
ceilings	0.1745	0 parked	0.20675	failure to ma	aintain	-0.1445	extra	0.1940	9 tower	0.15873
imc	0.1648	0 colliding	0.18631	lack		0.1323	instructior	ns 0.1703	1 company	0.13894
night	0.1634	3		preflight		0.1258	collision	0.1516	9 personne	l's 0.13476
adverse	0.1587	9		selector		0.1253				
low	0.1562	2		tank		0.1227				
dark	0.1502	3								
Торіс	6	Торі	c7	Торі	c8		Topic9		Торіс	:10
Term	Score	Term	Score	Term	Score	Term		Score	Term	Score
maintenance	0.21821	pattern	0.37247	supervision	0.26775	stall		0.2194	runway	0.21757
personnel	0.20892	entry	0.28841	remedial	0.23798	airspee	b	0.2098	go	0.17635
main	0.20867	traffic	0.28284	action	0.22390	landing		-0.2008	proper	0.17585
landing gear	0.20566	using	0.26881	instructor's	0.21273	altitude		0.1692	around	0.17463
service	0.16827	without	0.25605	instructor	0.21045	comper	isation	-0.1453	point	0.16389
company	0.15817	executing	0.25288	student	0.19544	inadver	tent	0.1433	factors	0.15093
bulletin	0.15699	insure	0.24649	student's	0.18438	roll		-0.1412	touchdown	0.14621
right	0.15016	manual	0.24269	dual	0.18007	adequa	te	0.1310	wrong	0.12354
actuator	0.14899	information	0.23415	certified	0.16579	crosswi	nd	-0.1297	end	0.12053
left	0.13669	correct	0.22607	inadequate	0.16435	low		0.1286	accident	0.11897
inspection	0.13135	pilots	0.22601	cfi	0.15321	wind		-0.1271	attain	0.11781
collapse	0.12798	operating	0.19662	delayed	0.14908	directio	nal control	-0.1269	tailwind	0.11619
assembly	0.12746	adequately	0.17632	flight	0.13495	spin		0.1201	decision	0.11271
attach	0.12503					conditio	ons	-0.1102	overrun	0.11254

Fig. 5: Topic Words for 10 topics

Other analysis options include *Clustering Analysis* of terms and documents. The number of clusters can be set and cluster membership can be saved to the existing (Cluster Docs) or a new data table (Cluster Terms).

PART III: DISCOVER RELATIONSHIPS AND PREDICTIVE MODELING

The Text Explorer top triangle menu (Fig. 2, right) shows several options for saving the DTM or any analysis results. This allows you to explore relationships between your unstructured and structured data, or to use numeric representations of your text data as independent variables in predictive modeling.

The result from the term creation phase, the DTM, can be directly added to the data table. The number of terms can be chosen in order to reduce the dimensionality of the matrix. An interesting option is the type of weighting factor stored in indicator columns: Compared to 'Binary' (term is used or not), settings like 'TF-IDF' (Term-Frequency Inverse-Document-Frequency) can be very powerful, see Help Text Explorer (2017).

Figure 6 shows all documents over time (X-axis) and split by 'fatal' (Y-axis) and cluster 1-10 assigned by Cluster Documents. This result suggests for instance to investigate some special cases like Cluster 4 or 8. For cluster 9 fatality could be reduced over time.

Fig. 6: Combining text analysis results (here wrap by 'Cluster' from Cluster Documents) with other data (Here Y='fatal' and X='event date')

Figure 7 shows an example for a predictive model solely based on text information: Using the Generalized (Penalized) Regression personality in Fit Model, we built a model predicting 'fatal' using all(!) indicator variables from the DTM. The LASSO method helps with variable selection: By moving the red slider on the left towards zero, the penalty is increased and more variables are removed from the model. The validation plot on the right helps to select the "best" model, here based on AIC corrected.

The model tells us that the term 'landing' (with binary weights) is highly significant and negative. Probably this means that we don't need to worry too much about fatal accidents during the landing phase.

A next step could be to improve the model by adding structured data which is also available, maybe about time or weather conditions. All of this takes you minutes with JMP, rather than days of programming and tedious text processing. Interactive visual outputs are made directly available to communicate your findings.

Magnitude of Scaled Parameter Estimates

Parameter Estimates for Original Predictors

Magnitude of Scaled Parameter Estimates

			Wald	Prob >			Singularity
Term	Estimate	Std Error	ChiSquare	ChiSquare	Lower 95%	Upper 95%	Details
Intercept	-2.507953	0.134383	348.29741	<.0001*	-2.771339	-2.244567	
landing Binary	-1.181923	0.1660677	50.653357	<.0001*	-1.50741	-0.856437	
failure Binary	0	0	0	1.0000	0	0	
factor Binary	-0.093249	0.1279109	0.5314684	0.4660	-0.34395	0.1574514	
resulted Binary	0	0	0	1.0000	0	0	
failure to maintain Binary	0.3893494	0.1764678	4.8679732	0.0274*	0.0434789	0.7352198	
flight Binary	0.3782425	0.1545093	5.9928205	0.0144*	0.0754098	0.6810751	
factors Binary	0	0	0	1.0000	0	0	
contributing Binary	0	0	0	1.0000	0	0	
terrain Binary	0.0162515	0.1870853	0.0075458	0.9308	-0.350429	0.382932	

Fig. 7: Using text analysis results in predictive modelling (here: Generalized Regression)

CONCLUSION

Making discoveries and visualizing information from unstructured text data has never been easier and more fun. Using version 13 of JMP (and of JMP Pro for even more powerful text analysis) allows you to add unstructured text data to your data mining scenario. Combining the results from your text analysis with other structured data can take your predictive models to the next level.

Ideas for future developments include more options to import text data into JMP (see also JMP Addin, 2016), adding other data formats like audio or video and to further streamline the integration of text analysis and predictive modeling tools.

REFERENCES

- JMP Addin Adsurgo TM Tools (2016): Text Importer Text, PDF, Word Documents, and Powerpoint. JMP Community. http://bit.ly/2srow3s
- JMP Help Text Explorer (2017): Text Explorer Explore Unstructured Text in Your Data. http://bit.ly/2rh2vok

JMP Home (2017): http://www.JMP.com

Karl A., Wisnowski J., Rushing W.H. (2015). A practical guide to text mining with topic extraction. WIREs Comput Stat 2015, 7:326–340. doi: 10.1002/wics.1361

Klimberg, Ron and B.D. McCullough (2016). *Fundamentals of Predictive Analytics with JMP, Second Edition*. Cary, NC: SAS Institute Inc. Chapter 15: Text Mining.

Singh V. and Zhang Q. (2016). *Text Mining Online Reviews with JMP 13*. JMP Discovery Summit, Cary, NC: http://bit.ly/2t5CWTs

Vijayan, J. (2015). Solving the Unstructured Data Challenge. CIO.

http://www.cio.com/article/2941015/big-data/solving-the-unstructured-data-challenge.html